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Decoherence and Correlations in Semiclassical
Cosmology
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Using the mathematical structure of rigged Hilbert spaces, for both in and out
Fock spaces of a simple cosmological model, we verify the two requirements
for classicality: decoherence and correlations.

1. INTRODUCTION

We know that the laws of classical mechanics describe with a high

degree of accuracy the behavior of macroscopic systems, and yet it is believed
that the phenomena on all scales and including the entire universe follow

the laws of quantum mechanics. So, if we want to reconcile the two last

statements, it is essential to understand the transition from the quantum to

the classical regime. One of the scenarios where this problem is relevant is

quantum cosmology, in which one attempts to apply quantum mechanics to

closed cosmologies. This involves a problem that has not been solved; namely,
quantizing the gravitational field. Therefore, it is an important issue to predict

the conditions under which the gravitational field may be regarded as classical.

The point of view we will take is that there are two requirements that

a system must fulfill to be regarded as classical: decoherence and correlations.

The first requirement is that the state that describes the system must be
approximately classical, that is, that the off-diagonal terms of the reduced

density matrix may be exceedingly smaller than the diagonal terms.

The second requirement is that evolution to a very good approximation

should be described by classical laws. This means that the wave function or

some distribution constructed from it (for example, the Wigner function
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criterion [9]) should be strongly peaked about a classical configuration, i.e.,

a configuration where coordinates and momenta are strongly correlated.

In a previous work [1], one of us studied the problem of choosing the
mathematical structure that better explains the time asymmetry of nature.

From this work, we know that if we want to retain the time-symmetric laws

of nature and at the same time explain the time asymmetry of the universe,

we must choose a space of solutions which is not time-symmetric.

In the context of semiclassical cosmology from a fully quantized cosmo-

logical model, a variable a and a time parameter h can be defined so that
the function a 5 a( h ) can be found. When h ® ` we obtain a classical

geometry gout
m n for the universe. Using the time h , we can transform the

Wheeler±DeWitt equation into a SchroÈ dinger equation with the corresponding

Hamiltonian h(aout). Using h(aout) and the classical geometry gout
m n , we can

find a semiclassical vacuum state | 0, out & which diagonalizes the Hamiltonian,

the creation and annihilation operators related to this vacuum, and the corres-
ponding Fock spaces.

As we have already explained, to obtain a time-asymmetric evolution,

we will choose time-asymmetric Fock spaces. A convenient choices of time-

asymmetric spaces was proposed in ref. 1.

2. THE MODEL

We now introduce the model we will use to illustrate the method proposed
in ref. 1. Let us consider a Robertson±Walker metric (we will mostly consider

the flat case)

dS 5 a2 ( h )(d h 2 2 dx2 2 dy2 2 dz2) (1)

where h is the conformal time and a( h ) the Robertson±Walker scale factor.

The total action is given by

S 5 Sg 1 Sf 1 Si (2)

where Sg is the gravitational action, Sf is the usual action of a spinless massive

scalar field w , conformally coupled ( j 5 1/6), and Si is the interaction given

by a mass term in Robertson±Walker geometry. The gravitational action is

given by

Sg 5 M2 # d h F 2
1

2
aÇ 2 2 V (a) G (3)

where M is the Planck mass, aÇ 5 da/d h , and V(a) is the potential function

that arises from a spatial curvature, a possible cosmological constant, and,

eventually, a classical matter field.
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In this paper we will consider the potential function used by Birrell

and Davies [2] to illustrate the use of the adiabatic approximation in an

asymptotically nonstatic four-dimensional cosmological model:

V(a) 5
B2

2 1 1 2
A2

a2 2 (4)

where A and B are arbitrary constants.

The Wheeler±DeWitt equation for this model is

H C (a, w ) 5 (hg 1 hf 1 hi) C (a, w ) 5 0 (5)

where

hg 5
1

2M
- 2

a 1 M 2V (a) (6)

hf 5 2
1

2 # k

( - 2
w k 2 k2 w 2

k) dk (7)

hi 5
m2a2

2 # k

w 2
k dk (8)

and m is the mass of the scalar field.

To analyze decoherence and correlations, we need to define a time

parameter; so we will work in the semiclassical regime. Therefore let us go

to the semiclassical case using the WKB ansatz, namely

C (a, w ) 5 x (a, w ) exp[iM 2S(a)] (9)

Let us now assume that S(a) and x (a, w ) can be expanded in powers of M 2 1:

S 5 S0 1 M 2 1S1 1 M 2 2S2 1 . . . (10)

x 5 x 0 1 M 2 1 x 1 1 M 2 2 x 2 1 . . . (11)

If we substitute the last equations into Eq. (5), we obtain a set a set of

equations involving all the functions appearing in the expansion. To leading

order (i.e., M 2), we get

F dS(a)

da G 2

5 2V(a) (12)

which is essentially the Hamilton±Jacobi equation for the variable a( h ). From

this equation we can deduce S(a).

Then we can define the time parameter in our model as follows: first

we write the momentum associated to a( h ), namely



1352 Castagnino and Landau

da

dt
5

dS

da

Then, the (semi)classical time parameter h is given by

d

d h
5

dS

da

d

da
5 6 ! 2V(a)

d

da
(13)

From Eqs. (12) and (13), we can find a set of classical solutions

a( h ) 5 6 (A2 1 B2 h 2)1/2 1 C (14)

where C is a constant.

Using different values of the constant C and different choices of the

signs 6 we obtain different (semi)classical geometries. We will work only
with two different cases: we will always choose C 5 0 and we will study

the cases with the plus and the minus sign. We will label these (semi)classical

geometries with indexes a and b , respectively. From Eq. (14) we can see

that in the asymptotic regions ( h ® 6 ` ) the model approaches the radiation-

dominated Friedmann cosmology.

Taking the following order in the WDW equation, we obtain a SchroÈ d-
inger equation for x (a, w ):

i
d

d h
x (a, w ) 5 2

1

2 # k

[ - 2
k 2 V 2

k w 2
k] dk x (a, w ) (15)

where V 2
k 5 m2a2 1 k2.

As the coupling is conformal we will have well-defined vacua [2]. So,
we consider now two scales ain and aout such that 0 , ain , , aout. Next,

we define the corresponding | 0, in & , | 0, out & vacua there, where | 0, in & is the

adiabatic vacuum for h ® 2 ` and | 0, out & is the corresponding one for h ®
1 ` . It is well known [2, 3] that we can diagonalize the time-dependent

Hamiltonian (15) at ain and at aout and define the corresponding creation and

annihilation operators, and the corresponding Fock spaces.
Thus, following Eqs. (37)±(43) of ref. 1, we can construct the Fock

space and find the eigenvector of h(aout) as follows:

h(aout) | {k}, out & 5 h(aout) | Ã , [k], out &

5 V (aout) | {k}, out & 5 o
k P {k}

V Ã (aout) | Ã , [k], out & (16)

where Ã 5 k2, [k] is the remaining set of labels necessary to define the

vector unambiguously, and | Ã , [k], out & is an orthonormal basis [1].

In the same way we can find the eigenvectors of h(ain). Thus we can

also define the S-matrix between the in and out states [Eq. (44), ref. 1]:
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S Ã ,[k]; Ã 8,[k8] 5 ^ Ã , [k], in | Ã 8, [k8], out & 5 S Ã ,[k];[k8] d ( Ã 2 Ã 8) (17)

Now we will define the Fock in and out spaces. We make the following

choice: for the in Fock space we will use functions | c & P f 1 ,in, namely, such

that ^ Ã , in | c & P S | R 1 and ^ Ã , in | c & P H 2
1 | R 1 , s is Schwartz space and where

H 2
1 is the space of Hardy class function from above; and for the out Fock

space we will use functions | w & P f 2 ,out such that ^ Ã , out | w & P S | R 1 and
^ Ã , out | w & P H 2

2 | R 1 . So we can obtain [1] a spectral decomposition for the

h(aout) (in a weak sense):

h(aout) 5 o
n

V n | nÅ & ^ nÅ | 1 # dz V z | zÅ & ^ zÅ | (18)

where V n 5 m2a2
out 1 zn , and zn are the poles of the S-matrix.

From refs. 4 and 6 it can be seen that S-matrix corresponding to this

model has infinite poles and that the k corresponding to each pole reads

k2 5 mB F 2
mA2

B
2 2i 1 n 1

1

2 2 G (19)

Thus we can compute the squared energy of each pole:

V 2
n 5 m2a2 1 mB F 2

mA2

B
2 2i 1 n 1

1

2 2 G (20)

3. DECOHERENCE AND CORRELATIONS

In this section we show how classical behavior, namely decoherence

and correlations, arises using the spectral decomposition of Eq. (18).
Decoherence is a dissipative process. It has been studied [12] as closely

related to another dissipative process, namely, particle creation from the

gravitational field during universe expansion. We will obtain as in ref. 5 a

set of discrete unstable states, namely, unstable particles, and a set of continu-

ous stable states [see Eq. (18)], the latter corresponding to the stable particles.

As the modes do not interact between themselves, we can write

x (a, w ) 5 &
`

n 5 1
x n( h , w n) (21)

Thus we obtain a SchroÈ dinger equation for each mode, namely

i
d

d h
x n(a, w n) 5 2

1

2
[ - 2

n 2 V 2
n w 2

n] x n(a, w n) (22)

Let now us now assume the Gaussian ansatz for x n( h , w n):
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x n( h , w n) 5 An( h ) exp[i a n( h ) 2 Bn( h ) w 2
n] (23)

where An( h ) and a n( h ) are real, while Bn( h ) may be complex, namely, Bn( h )

5 BnR( h ) 1 iBni( h ).
Solving Eq. (22) with the Gaussian ansatz, we obtain a n( h ) and Bn( h ):

a Ç n( h ) 5 2 BnR( h ) (24)

BÇ n( h ) 5 2 2iB2
n ( h ) 1

i

2
V 2

n( h ) (25)

From the normalization of x n( h , w n) we obtain

An( h ) 5 p 2 1/4(2BnR( h ))1/4 (26)

From these equations and working with the continuous spectrum [i.e.,

with the second part of (18)] it can be proved that there is loss of coherence

[6, 7] only for certain initial conditions. Here we will see that, working with

the discrete poles spectrum, as proposed in ref. 1, we will find decoherence
for almost every initial condition.

Integrating the modes of the scalar field, we obtain the following reduced

density matrix r r:

r r(a, a8) 5 exp[ 2 iMS a (a) 1 iMS a (a8)] r a a
r (a, a8)

1 exp[ 2 iMS a (a) 1 iMS b (a8)] r a b
r (a, a8)

1 exp[ 2 iMS b (a) 1 iMS a (a8)] r b a
r (a, a8)

1 exp[ 2 iMS b (a) 1 iMS b (a8)] r b b
r (a, a8)

where

r a b
r (a, a8) 5 &

`

n 5 1
r a b

rn (a, a8) 5 &
`

n 5 1 # d w n x a
n ( h , w n) x b

n ( h , w n) (27)

and a and b label the two different classical geometries.

It is convenient to introduce the following change of variable in order

to characterize the wave function of each mode:

Bn 5 2
1

2

gÇ n

gn

(28)

Let us now consider a solution the second-order adiabatic expansion of

function gn in the limit h ® 1 ` :
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gn 5
Pn

! 2 V n

exp F 2 i # V n( h 8) d h 8 G
1

Qn

! 2 V n

exp F i # V n( h 8) d h 8 G (29)

where Pn and Qn are arbitrary coefficients. It is obvious that if all the V n are

real, the last equation will have an oscillatory nature, as will its derivatives.

This will also be the behavior of Bn. Then we see that when h ® 1 ` , Bn

is an oscillatory function with no limits in general. We will only have good

limits for some particular cases [6, 8, 9]. But if V n is complex, because

Im V n Þ 0, a damping and a growing factor appear in Eq. (29), and Bn reads

in the limit h ® `

Bn ’ 1±2 V n (30)

From Eqs. (14), (20), and (30) we can compute the expression for Bn

for both semiclassical solutions a and b :

Bn( h , a ) 5 Bn( h , b ) 5
! 2

4 F m2B2 h 2 1 1 m4B4 h 4 1 4m2B2 1 n 1
1

2 2
2

2
1/2 G 1/2

2 i
1±2 ! 2 mB(n 1 1±2 )

[m2B2 h 2 1 (m4B4 h 4 1 4m2B2(n 1 1±2 )2)1/2]1/2

(31)

Now we will see, making the exact calculations, that in the limit h ®
` there is necessarily decoherence (a) for the same classical geometry if the

times h and h 8 are different, namely r a a
r ( h , h 8) ® 0 and r b b

r ( h , h 8) ® 0
when h ® ` , and (b) for different classical geometries ( a Þ b ), i.e.,

r a b
r ( h , h 8) ® 0 when h ® ` .

From Eqs. (23) and (27) we obtain

r a b
rn ( h , h 8) 5 1 4BnR( h , a )BnR( h 8, b )

[B*n ( h , a ) 1 Bn( h 8, b )]2 2
1/4

exp[ 2 i a n( h , a ) 1 i a n( h 8, b )]

(32)

(a) Using Eqs. (30) and (31), we calculate the asymptotic behavior

( h , h 8 ® ` ) of r a a
rn ( h , h 8), namely

| r a a
rn ( h , h 8) | > F 4 h h 8

[ h 1 h 8]2 G 1/4

(33)

Making the change of variables ( h 2 h 8)/2 5 D , ( h 1 h 8)/2 5 h Å with

D ¿ 1, we obtain
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| r a a
rn ( h , h 8) | > F 1 2 1 D

h 2
2 G 1/4

(34)

Since | r a a
rn ( h , h 8) | # 1 with the equality only if h 5 h 8, it is easy to

see that r a a
r ( h , h 8) is equal to zero if h Þ h 8. This means that the reduced

density matrix has diagonalized perfectly, i.e., we have achieved perfect

decoherence. However, it is known [6, 7] that perfect decoherence also implies

that the Wigner function has an infinite spread, so we cannot say that the

system is classical.

On the other hand, Dowker and Kent [10, 11], working with the consistent
histories formalism, made the assumption that exactly consistent sets of

histories must be found very close to an approximately consistent set. Thus,

having found the exact consistent set of histories, it would be reasonable to

say that there are many approximate consistent sets near it. Although we are

not working with this formalism, we can consider geometries a and b to be

different histories. Since having an exact consistent set of histories means in
our formalism exact decoherence, we can try to find the approximate consis-

tent sets near the exact one, in order to obtain both requirements for classical

behavior, namely decoherence and correlations.

If we introduce a cutoff in Eq. (27) at some very large value of n, n 5
N, the reduced density matrix is no longer exactly diagonal, i.e., we obtain
the ª approximateº consistent set. We will postpone for a future work the

discussion about the value of N. However, it would be useful to consider what

conditions has N to fulfill in order to achieve decoherence and correlations.

Thus we obtain if h ’ h 8

| r a a
r ( h , h 8) | 5 Z & Nn 5 1

r a a
rn ( h , h 8) Z ’ exp F 2

N

4 1 D
h 2

2 G (35)

From the last equation, we observe that the reduced density matrix turns

out to be a Gaussian of width s d , where

s d 5
2 h
N1/2 (36)

Thus, one must have ! N À 1 in order to obtain decoherence.

(b) From Eqs. (31) and (32) we compute r b b
r ( h , h 8) and r a b

r ( h , h 8) and
obtain for h ® ` as in Eq. (33)

| r b b
rn ( h , h 8) | 5 | r a b

rn ( h , h 8) | > F 4 h h 8

[ h 1 h 8]2 G 1/4

(37)
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So, following the same steps as we did for r a a
rn ( h , h 8), (33)±(36), we

obtain decoherence for different conformal times and for different classical

geometries. It is easy to see that we can follow the same steps for
r a b

rn ( h , h 8) since from Eq. (31), Bn( h , a ) 5 Bn( h , b ).

Next we will analyze the existence of correlations between coordinates

and momenta using the Wigner function criterion [9]. Since correlations

between coordinates and momenta should be examined ª insideº each classical

branch, we compute the Wigner function associated with each (semi)classical

solution. The Wigner function associated with the reduced density matrix
given by Eqs. (27) and (32) is [7]

F a a
W (a, P)

> C2( h ) ! p
s 2

c
exp F 2

(P 2 M 2SÇ 1 ( N
n 5 1 ( a Ç n 2 BÇ ni /4BnR))2

s 2
c G (38)

where

s 2
c 5 o

N

n 5 1

| BÇ n | 2

4B2
nR

(39)

We can predict strong correlation when the center of the peak of the

Wigner function is large compared to the spread, i.e., when

1 M 2SÇ 2 o
N

n 5 1 1 a Ç n 2
BÇ ni

4BnR 2 2
2

À s 2
c (40)

Using the same approximation we made for calculating the reduced

density matrix, we obtain the following expression for the width of Wig-
ner function:

s 2
c( h , a ) > N

4 h 2 (41)

We can see that s c is the inverse of s d , (35), confirming what we said
following Eq. (34).

We also calculate the center of the peak of the Wigner function, namely:

1 M 2SÇ 2 o
N

n 5 1 1 a Ç n 2
BÇ ni

4BnR 2 2
2

> m2B2N 2 h 2 (42)

From Eqs. (41) and (42) we observe the behavior of the center of the

peak and the width of the Wigner function in the limit h ® ` . Thus the

condition for the existence of correlations turns out to be
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N À
1

m2B2 h 4 (43)

So, if the value of the cutoff is such that N À 1 and N À 1/m2B2 h 4,
we can say that the system behaves classically: the off-diagonal terms of the

reduced density matrix are exponentially smaller that the diagonal terms, while

we can predict strong correlations between a( h ) and its conjugate momenta.

4. CONCLUSION

In the previous section we analyzed the existence of decoherence and

correlations within the model proposed in Section 2. In order to obtain

decoherence and correlations we introduced a cutoff N and found restrictions

on its value: N À 1 and N À 1/m2B2 h 4. This choice seems to be natural,

since really we are working in the limit h ® ` .
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